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Agenda

Dynamics of Low-
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System StrengthFrequency Stability and Control 

Challenges Solutions Challenges Solutions

With More Focus on the Real-Life Australian Systems and Experiences
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What is the NEM power system?

▪ NEM stands for National Electricity 
Market

▪ The NEM power system relates to 
the transmission system in the 
eastern part of Australia

▪ Very long (40,000 km) skinny
network! 

▪ 200 terawatt hours of electricity 
consumption (Dec 2021)
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Renewable Energy Target in Australia
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Technological Revolution

PEI

PEI

PEI

PEI: Power Electronics Interface

Synchronous 
generators

Grid AC 
Waveform

Several Operational Challenges may 
arise in emerging power systems!
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Challenge: Frequency Stability Issues

▪ Reduction in system inertia may result in a higher chance of frequency instability in 
inverter-rich power systems

Relationship between system 
inertia and frequency dynamics

𝑑∆𝑓

𝑑𝑡
=

𝑓𝑠
2𝐸𝑠

𝑃𝑚 − 𝑃𝑒 =
𝑓𝑠
2𝐸𝑠

∙ ∆𝑃

𝑅𝑜𝐶𝑜𝐹 =
∆𝑃

2 × 𝐻𝑠

Rate of change of frequency 
(RoCoF) following an active 

power mismatch (ΔP)
Low-inertia conditions → faster 

frequency dynamics What is required to ensure frequency 
stability in low-inertia conditions? P. Mancarella et al., "Power system security assessment of the future 

national electricity market", Finkel Review, Melbourne, June 2017.
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Challenge: System Monitoring
ARENA Project
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Challenge: System Fragility Issues

▪ There is a higher chance of system fragility issues in low-inertia operating 
conditions

▪ Possible interactions with frequency-dependant protection schemes

Under frequency load shedding 
threshold in Australia: 49 Hz

Secondary PV tripping threshold 
in Australia: 49.5 Hz

Over frequency generation shedding 
threshold in Australia: 51 Hz

✓ Generator trip, sympathetic renewable trip, load disconnection, 
interconnector trip, or the combinations of the mentioned trips
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Real-Life Example: The August 2018 Separation Event

Source: AEMO

Frequency Dynamics during the August event

Around 1 GW of load shedding

Around 200 MW of PV tripping

System separation
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Challenge: Frequency Regulation Issues

▪ Renewable energy resources are stochastic in nature with inherent variability 
and uncertainty in their active power output

𝑑∆𝑓

𝑑𝑡
=

𝑓𝑠
2𝐸𝑠

𝑃𝑚 − 𝑃𝑒 =
𝑓𝑠
2𝐸𝑠

∙ ∆𝑃

Relationship between system inertia 
and frequency dynamics

Higher chance of minor frequency excursions in 
emerging low-carbon power systems

What is required to ensure better 
performance in frequency regulation? 

J. Bryant, R. ghanbari, M. Jalili, P. Sokolowski, L. Meegahapola, “Frequency control challenges in power 
systems with high renewable power generation: An Autralian perspective,” RMIT University, 2019.
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Quick Recap

Frequency Control Challenges in Renewable-
Rich NEM Grid with Low-Inertia Conditions

Frequency Stability Issues System Fragility Frequency Regulation Issues
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Potential Solutions for Frequency Control 
Management in Low-Carbon Grids 

▪ There are several solutions to manage frequency control and the relevant fragility issues 
in low-carbon power systems including, but not limited to:

✓ Synchronous condenser installation (often coupled with flywheel)

✓ Frequency response constraints in security planning and unit commitment

✓ Mandatory frequency response requirements
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Example: Security-Constrained Unit Commitment

Sebastián Püschel-Løvengreen, Mehdi Ghazavi Dozein, Steven Low,
Pierluigi Mancarella, “Separation event-constrained optimal power flow
to enhance resilience in low-inertia power systems,” Electric Power
Systems Research, Volume 189, 2020,
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Potential Solutions for Frequency Control 
Management in Low-Carbon Grids 

▪ There are several solutions to manage frequency control and the relevant fragility issues 
in renewable-rich power systems including, but not limited to:

✓ Synchronous condenser installation (often coupled with flywheel)

✓ Frequency response constraints in system security planning

✓ Mandatory frequency response requirements

✓ Frequency stability support from inverter-based resources

• Battery energy storage systems 
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Fast Frequency Response (FFR) from 
Hornsdale Battery during the August 2018 Event

M. Ghazavi Dozein and P. Mancarella, "Frequency Response Capabilities of Utility-scale Battery Energy Storage Systems, with Application to the August 2018 Separation Event in Australia," ICPES 2019.

But there’s a catch….

Great contribution to system frequency stability!
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Battery FFR and System-Level Interactions

Heywood trip

South Australia 
Separation 

Interaction of battery FFR with 
interconnector protection  

Negative contribution to system fragility!

Source: AEMO Source: AEMO

M. Ghazavi Dozein and P. Mancarella, "Possible Negative Interactions between Fast Frequency Response from 

Utility-scale Battery Storage and Interconnector Protection Schemes," AUPEC 2019.
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Battery Contribution to Frequency Stability and Fragility

▪ Assuming a hypothetical 700 MW installed in Victoria during the August 2018 Separation 
Event 

Heywood active power flow 

Battery FFR and mainland frequency 

Importance of FFR location

M. Ghazavi Dozein and P. Mancarella, "Possible Negative Interactions between Fast Frequency Response from 

Utility-scale Battery Storage and Interconnector Protection Schemes," AUPEC 2019.

Importance of System-Level 
Understanding and Analysis
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▪ Batteries can also be utilised for many other frequency support applications:

– Frequency regulation 

– Virtual inertia response (if equipped with virtual synchronous machine (VSM) control)

– ……

▪ There are certain system-level factors that may impact battery capabilities in 
frequency control support 

– We will discuss it later in this presentation!

Final Points on Batteries 

How should we value the frequency stability support from 
batteries (or other fast responsive components?)

How should we incentivise the quality of response? 
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AEMO Project: Very Fast FCAS!

For further information: https://aemo.com.au/en/consultations/current-and-closed-consultations/amendment-of-the-mass-very-fast-fcas

FCAS: Frequency Control Ancillary Services 
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Potential Solutions for Frequency Control 
Management in Low-Carbon Grids 

▪ There are several solutions to manage frequency control and the relevant fragility issues in 
renewable-rich power systems including, but not limited to:

✓ Synchronous condenser installation (often coupled with flywheel)

✓ Frequency response constraints in system security planning

✓ Mandatory frequency response requirements

✓ Frequency stability support from inverter-based resources

• Battery energy storage systems 

• Hydrogen electrolysers!



© 2023 M. Ghazavi Dozein – The University of Melbourne 23

Electrolyser vs Battery 

The darker colour indicates a better performance in system dynamic support delivery

Frequency control from electrolysers may reduce the need for 
frequency control-oriented battery installation

M. Ghazavi Dozein, A. Jalali and P. Mancarella, "Fast Frequency Response From Utility-Scale Hydrogen Electrolyzers," in IEEE Transactions on Sustainable Energy, 2021.

M. Ghazavi Dozein, A. M. De Corato, and P. Mancarella, “Virtual Inertia Response and Frequency Control Ancillary Services from Hydrogen Electrolyzers," IEEE Transactions on
Power Systems, 2022.

S. D. Tavakoli, M. Ghazavi Dozein, et al., "Grid-Forming Services From Hydrogen Electrolyzers," in IEEE Transactions on Sustainable Energy, 2023.
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Potential Solutions for Frequency Control 
Management in Low-Carbon Grids 

▪ There are several solutions to manage frequency control and the relevant fragility issues 
in renewable-rich power systems including, but not limited to:

✓ Synchronous condenser installation (often coupled with flywheel)

✓ Frequency response constraints in system security planning

✓ Mandatory frequency response requirements

✓ Frequency stability support from inverter-based resources

• Battery energy storage systems 

• Hydrogen electrolyzers!

• Distributed energy resources, including photovoltaics
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Project with AusNet

Keep this project in mind, we will 
talk about this project later!
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Potential Solutions for Frequency Control 
Management in Low-Carbon Grids 

▪ There are several solutions to manage frequency control and the relevant fragility issues 
in renewable-rich power systems including, but not limited to:

✓ Synchronous condenser installation (often coupled with flywheel)

✓ Frequency response constraints in system security planning

✓ Mandatory frequency response requirements

✓ Frequency stability support from inverter-based resources

• Battery energy storage systems 

• Hydrogen electrolyzers!

• Distributed energy resources, including photovoltaics  

• And many more …..
There are technology solutions, but…..
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Power system variables and various stability 
types are influenced by certain controls and 

physical characteristics!

What are these physical characteristics????

Inertia→ already talked about it

System strength????

What is system strength???

Back to the Principles of Power System Dynamics
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System Strength
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System Strength Definition

▪ System strength indicates the system ability to maintain voltage waveform stability

✓ Voltage magnitude 

✓ Voltage angle 

✓ Waveform shape

System strength relates to the sensitivity of voltage magnitude, phase angle, 
and its waveform at any given connection with respect to the change in system 
active/reactive loading in every possible operating condition

▪ Consolidating different views and definitions

M. Ghazavi Dozein, “System Dynamics of Low-Carbon Grids: Fundamentals, Challenges, and Mitigation Solutions,” PhD Thesis, University of Melbourne, 2021.
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System Strength Qualitative Metrics

▪ System strength has traditionally been assessed via fault level related metrics 

▪ The simplest quantitative metric is short circuit ratio 

𝑆𝐶𝑅 =
𝑆𝑆𝐶𝑀𝑉𝐴
𝑃𝑀𝑊𝑅

Strong grid → higher SCR values

Weak grids → lower SCR values  

▪ Other assessment metrics have also been used in industry including operating short 
circuit ratio, weighted short circuit ratio, composite SCR, site-dependent metrics, etc

M. Ghazavi Dozein, P. Mancarella, T.K. Saha, R. Yan, “System strength and weak grids: fundamentals, challenges, and mitigation strategies”, AUPEC 2018.
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Operational Challenges in Weak Grids
Voltage Stability Issue and Power Transfer Limit

Sufficient fault level needs to be in 
place to achieve certain power 

injection into the system 

▪ There is a relationship between system strength, voltage stability, and power transfer 
limit at a given location

The SCR value reflects on how far a connection 
point is from its voltage critical point!
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Potential Solution: Synchronous Condenser Installation

▪ Synchronous condenser installation in South Australia 
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Need for Voltage Support in Weak Grids!

Can IBRs help with voltage control and 
reactive power support????

IBR: Inverter-Based Resources
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IBR Capability/Requirement in/for Voltage Support

M. Ghazavi Dozein, “System Dynamics of Low-Carbon Grids: Fundamentals, Challenges, and Mitigation Solutions,” PhD Thesis, University of Melbourne, 2021.
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Real-life Example of Sympathetic IBR Tripping

▪ Example: The November 2019 event in Queensland

180 MW- 310 MW PV 
disconnection following the fault
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Operational Challenges/Solutions in Weak Grids
Inverter-driven Instability Issues

IEEE Power System Dynamic Performance Committee, "Task force on stability definitions and characterization of dynamic behaviour in systems with high penetration of power electronic interfaced
technologies," Tech. Rep., May 2020.

Solution: Advanced Inverter Control!
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▪ The delivery of one system stability service to meet a specific system need may 
negatively impact another system need, e.g.,

✓ System stability service: frequency control response

✓ System need #1: frequency stability

✓ System need #2: voltage control

Operational Challenges in Weak Grids
Interactions in System Support Services

IBRs at a weak 
distribution feeder

High voltage 
sensitivity to 
active power 

Frequency response

▪ This is something that market does not 
consider!

▪ This is not an inverter-driven issue!

▪ System physical characteristics and 
operating point may lead to such 
interactions!

Transmission 
grid

M. Ghazavi Dozein, B. C. Pal and P. Mancarella, "Dynamics of Inverter-Based Resources in Weak 

Distribution Grids," in IEEE Transactions on Power Systems, 2022.
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Operational Challenges in Weak Grids
Small-signal Oscillating Phenomena

▪ Weak systems are prone to small-signal oscillating phenomena due to 
several reasons 

✓ Cross IBR interactions and instabilities

✓ Poor PLL performance and implementation 

✓ Poor IBR current control tunning 

✓ Weak grid characteristics (high impedances, low fault level, low SCR)

✓ High IBR penetrations 

✓ …..
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Real-life Example: West Murray Region

AEMO, “West Murray”, AEMO Website, Nov 2021.

Solution: 50% renewable generation constraint
was issued by AEMO + IBR disconnections 
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Zone of Overlap

System strength and Frequency stability

System frequency 
Voltage magnitude

and angle 

IBR control instability 

Small-signal instability 

Cascading events 

System strength Frequency Stability
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Other operational issues in weak grids

▪ There are other challenges in the operation of weak grids:

✓ Power quality issues 

✓ System protection issues 

✓ System monitoring issues 

✓ etc
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Project with Reactive Technology
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Final Remark

IEEE Power System Dynamic Performance Committee, "Task force on stability definitions
and characterization of dynamic behaviour in systems with high penetration of power
electronic interfaced technologies," Tech. Rep., May 2020.

System frequency 
Voltage magnitude 

and angle 

Frequency Stability

System strength
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