Energy transition: new technologies, resilience, flexbility

CNO event: Energy Transition, 27 October 2021

Dr. Susanne Nies,

Board Chair currENT

General Manager Germany Smart Wires

The potential of Grid Enhancing Technologies

By COP26 we aim to reach Breakthrough Ambition (20% of key actors committed) for at least 10 sectors.

Benefits of Intelligent Power Grid Design Tools

Study commissioned by CurrENT

Executive Summary

01 June 2021

Grid Enhancing Technologies (GETs) provide for the needed solutions

About - Policy News & Events Contact

currENT is the voice of Europe's innovative grid technology companies.

Unlocking the Queue with Grid-Enhancing Technologies

CASE STUDY OF THE SOUTHWEST POWER POOL FINAL REPORT – PUBLIC VERSION

PRESENTED BY T. Bruce Tsuchida Stephanie Ross Adam Bigelow PREPARED FOR WATT (Working for Advanced Transmission Technologies) Coalition

FEBRUARY 1, 2021

A vast toolbox: Superconductors, Dynamic Line Rating, FACTS devices, netboosters...

A challenging time for utilities

Difficulty Permitting Limited political capital

Global Policy & Action

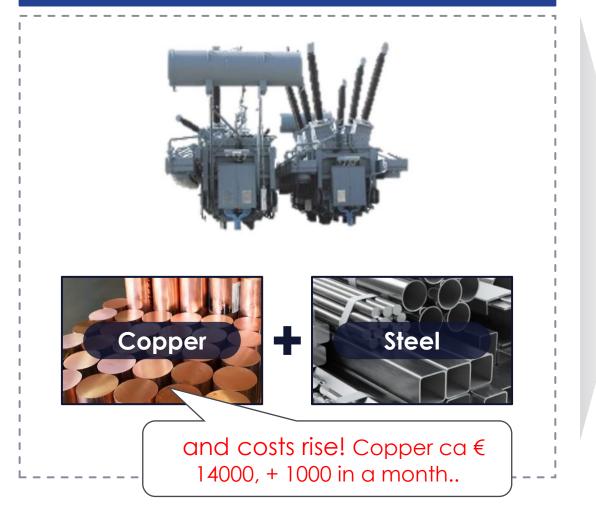
- GHG emission reduction targets
- Electrification of transportation, heating, industry
- Desire to avoid negative financial impact for consumers

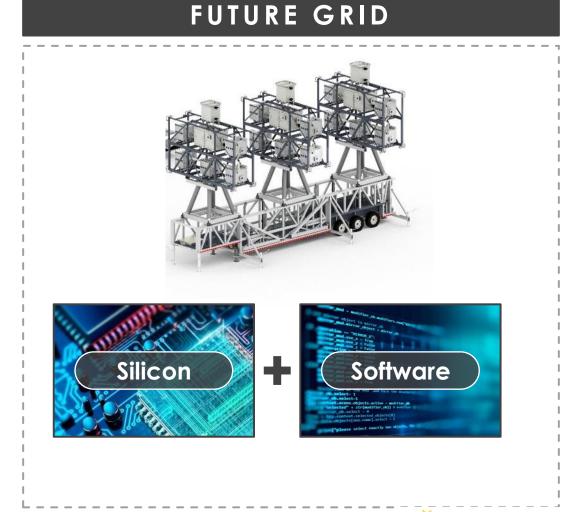
Political Shift has caught up to Renewable Economics

- Bipartisan support for jobs and economic recovery
- Savvy firms will utilize all available tools to make the most of this opportunity

Implications for networks

Smart Wires global customers share consistent messages


- They are worried about security of supply
- They are under pressure to invest in the grid and to **keep costs down**
- The are under intense **political pressure** to resolve ongoing delays in delivery of large-scale grid projects
- It is challenging to attract and retain staff
- End user dissatisfaction
- Grid reliability penalties
- Asset operation at thermal limits



Transition to a digital grid

TODAY'S GRID

Smart Wires Slide 6

Glasgow UNFCCC: Deploy what we have!

Deploy what we have

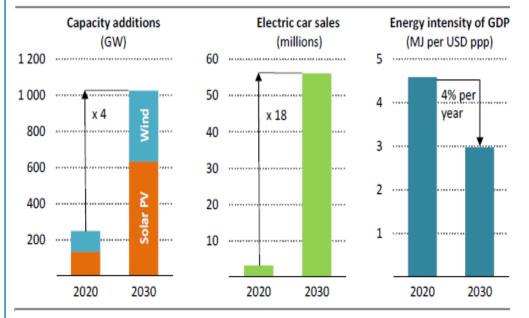
- Tom Burke from the climate think tank E3G told BBC News:
- "John Kerry, Bill Gates, et al. are wrong about the importance of R&D: Deployment of what we already have is what matters and for which we need big bucks."

CURRENT Enabling Network Technology

throughout Europe

"Our Vision is a European power network that is the recognised world leader in enabling decarbonisation through the efficient use of modern grid technology"

currENT : who we are


currENT is the key industry association representing innovative grid technology companies operating in Europe.

Our members are taking Europe's power network to the next level – developing and supplying innovative technologies that optimise and maximise use of the existing grid.

IEA Net Zero 2050

Key clean technologies ramp up by 2030 in the net zero pathway

Note: MJ = megajoules; GDP = gross domestic product in purchasing power parity.

3.4.2 Key milestones and decision points

Table 2.2 Key milestones in transforming global electricity generation

	-,				
Category					
Decarbonisation of • Advanced economies in aggregate: 2035.					
electricity sector	 Emerging market and developing economies: 2040. 				
Hydrogen-based • fuels	 Start retrofitting coal-fired power plants to co-fire with ammonia and gas turbines to co-fire with hydrogen by 2025. 				
Unabated • fossil fuel	 Phase out all subcritical coal-fired power plants by 2030 (870 GW existing plants and 14 GW under construction). 				
	 Phase out all unabated coal-fired plants by 2040. 				
	 Phase out large oil-fired power plants in the 2030s. 				
 Unabated natural gas-fired generation peaks by 2030 and is 90% lower by 2040. 					
Category		2020	2030	2050	
Total electricity genera	ation (TWh)	26 800	37 300	71 200	
Renewables					
Installed capacity (GW)		2 990	10 300	26 600	
Share in total generation	n .	29%	61%	88%	
Share of solar PV and w	vind in total generation	9%	40%	68%	
Carbon capture, utilisa	tion and storage (CCUS) generation (TWh)				
Coal and gas plants equ	ipped with CCUS	4	460	1 330	
Bioenergy plants with C	cus	0	130	840	
Hydrogen and ammoni	ia				
Average blending in glo	bal coal-fired generation (without CCUS)	0%	3%	100%	
Average blending in glo	bal gas-fired generation (without CCUS)	0%	9%	85%	
Unabated fossil fuels					
Share of unabated coal	in total electricity generation	35%	8%	0.0%	
Share of unabated natu	ural gas in total electricity generation	23%	17%	0.4%	
Nuclear power		2016-20	2021-30	2031-50	
Average annual capacit	y additions (GW)	7	17	24	
Infrastructure					
Electricity networks investment in USD billion (2019)		260	820	800	
Substations capacity (G	55 900	113 000	290 400		
Battery storage (GW)	18	590	3 100		
Public EV charging (GW	0	46	1 780	12 400	

Note: GW = gigawatts; GVA = gigavolt amperes.

Transforming the electricity sector in the way envisioned in the NZE involves large capacity additions for all low-emissions fuels and technologies. Global renewables capacity more than triples to 2030 and increases ninefold to 2050. From 2030 to 2050, this means adding more

25 June 2020

Climate proof Europe's power grid

Align regulation with European long term (2050) energy, climate and social policy

Accelerate near-term investments that future proof and strengthen resilience of power grids

Optimise existing grids and build new ones where needed

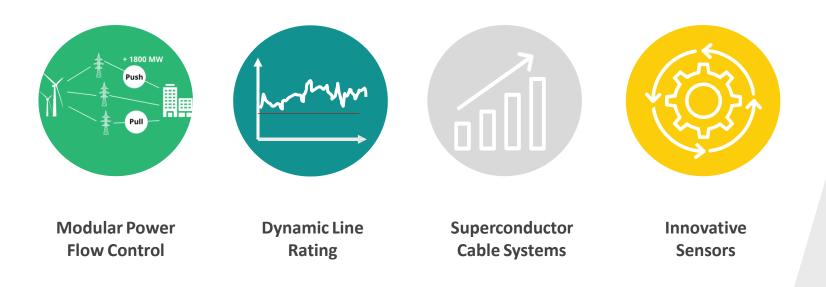
Use Social Cost Benefit Analysis when assessing power network investments

Increase transparency in network development and operational procedures

5

Opt for an output-based regulatory approach, and incentives and obligations for license holders to trial and implement new technologies

Develop a structured, transparent, and collaborative approach to qualification of innovative solutions.


Recent Policy Work

- ✓ National Development Plans (Germany, Spain, Portugal, Austria, Italy)
- ✓ Consultation response on TYNDP2022
- ✓ Revision of TEN-E Regulation
- ✓ Response on new EU DSO Entity
- ✓ ENTSO-E RDI Roadmap 2020-30
- ✓ currENT's contribution on EC Technology & Innovation Report
- ✓ EC Consultation on Offshore Renewable Energy Strategy
- \checkmark Open Letter to ENTSO-E on the Power System Needs Report
- ✓ Ofgem Consultation Response on RIIO-2

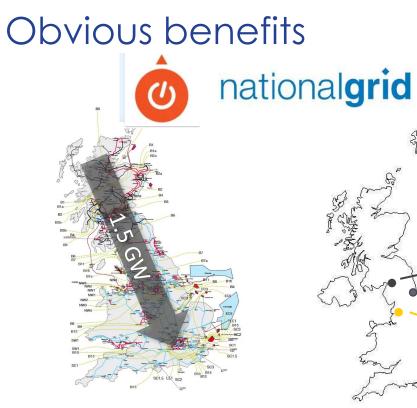
Technologies

Hardware, software and associated protocols applied to existing and new transmission facilities that increase the network's operational transfer capacity, and maximise the efficiency of grids

What technologies?

ENTSO-E Technopedia

Welcome to ENTSO-E's new tool, the Technopedia!


Energy transition is underway, we help you to keep up with the new technologies related to the Transmission System Operators. Below you will find factsheets of different innovative and state-of-the-art technologies covering the fields of transmission assets, system operations, digital and flexibility solutions. These upto-date sheets will help you to understand each technology and their advantages, and also to show their readiness level.

Dynamic Line Rating	Modul Static Synchronous Series Compensator	Superconductors
TRL 9	TRL 7 – TRL 9	AC: TRL 7 – TRL 86
		DC: TRL 5 – TRL 6 ⁷

Technology Readiness Levels (TRL):

- TRL 1 Basic research: basic principles are observed and reported
- TRL 2 Applied research: technology concept and/or application formulated
- TRL 3 Critical function, proof of concept established
- TRL 4 Laboratory testing of prototype component or process
- TRL 5 Laboratory testing of integrated system
- TRL 6 Prototype system verified
- TRL 7 Integrated pilot system demonstrated
- TRL 8 System incorporated in commercial design
- TRL 9 System ready for full scale deployment

Table 1: Source: ENTSO-E Technopedia

48 SmartValves

3 Sites

< 18 months Manufacturing to commissioning < 12 months For delivery of expansion £387 M Savings for UK consumers

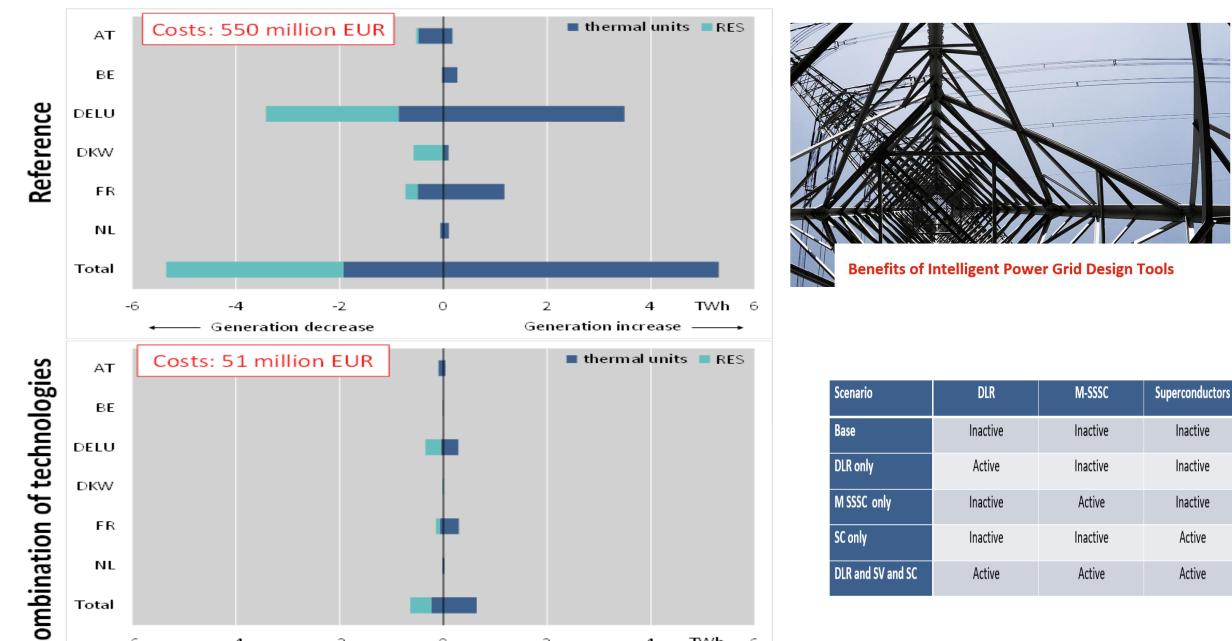
#	Circuit	SmartValv es	Voltage	Status	Commissioning
1	Harker – Stellar West	6	275 kV	Operational	March 2021
2	Harker – Fourstones	9/6	275 kV	Installed / Manufacturing	June 2021
3	Lackenby – Norton ¹	6	400 kV	Operational	March 2021
4	Penwortham Ckt#1	6	275 kV	Installed	May 2021
5 ¹ Sr	Penwortham Ckt mart Valves installed mid-circ	15 uit at Saltholme	275 kV	Manufacturing	June 2021

500 MW across 3 boundaries

Smart Wires: Global projects underway

• **South America –** Installation at EPM

- Picture shows installation underway in Colombia at 110 kV presently
- This is Phase 1 of a larger project and is Smart Wires first installation in South America
- Smart Wires is very active in Colombia, Chile, and Peru with a number of large projects planned for 2022-2024



Australia

- Picture shows installation recently commissioned in Australia at 330 kV presently
- This is our first SmartValve installation in Australia and we have a second one later this year facilitating increase in cross border transfer capacity
- Smart Wires technology was incorporated into the Integrated System Plan by AEMO in 2020

Consentec study: +90% decrease of congestion costs

Obvious benefits: Brattle report 2021

Unlocking the Queue Methodology

What does 2025 look like?

STATUS QUO:

Based on projects in the interconnection queues, planned generation retirements and transmission expansion in KS and OK, the 2025 base case scenario can support

2,600 MW

of new wind and solar generation using traditional planning approaches.

GETs IMPACTS:

The potential transmission capacity improvements from dynamic line ratings, advanced power flow control and advanced topology control were calculated using representative power flow snapshots and a model of the entire SPP network. Based on the increased transfer capacity, more projects from the interconnection queue could be built.

WITH GETS, OVER 5,200 MW

of new renewable generation can be economically built in KS and OK, by 2025.

Half as much will be built without GETs.

The installation cost of

\$90 MILLION would be recouped in 6 months.

It has all been said! Why is it not happening?

25 June 2020

Emphasize Grid enhancement in...

The Green Deal implementation

- ✓ Energy Efficiency Directive (EED): Energy Efficiency First Principle!
- ✓ Renewable Energy Directive (**RED**) revision: focus on optimised grids for 100% Renewables by 2050
- ✓ European Offshore Renewable Energy Strategy implementation
- ✓ TEN-E: more out of grids and more grids form ONE solution towards electrification

As part of Electrification and digitalisation

We want to promote efficient use of electricity networks through modern grid technologies:

- ✓ Dynamic Line Ratings
- ✓ Superconducting Cable Systems
- ✓ Modular Power Flow Control technology
- ✓ Intelligent sensors

Keeping the energy transition costs affordable and customers active

The use of efficient innovative technologies decreases the costs of the energy transition: Read our forthcoming report By Consentec

Our recommendations: NOVA now

Align regulation with European long term (2050) energy, climate and social policy

Accelerate near-term investments that future proof and strengthen resilience of power grids

Optimise power networks, existing and new ones, and build new ones where needed

Use Social Cost Benefit Analysis when assessing power network investments

Increase transparency in network development and operational procedures

Opt for an output-based regulatory approach, and incentives and obligations for license holders to trial and implement new technologies

Develop a structured, transparent, and collaborative approach to qualification of innovative solutions.

...And last but not least

Thanks for your attention Susanne Nies

info@currenteurope.eu

linkedin.com/current-europe/

@CurrentEurope

www.currenteurope.eu

