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Background

Energy Flow Chart 2014 Petrol
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The impact of renewable generation
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Variability, energy and secure capacity

Conventional capacity and energy displacement

at various levels of wind penetration, future UK scenarios, 55GW peak
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Source: P. Mancarella et al, Business case for flexible demand, Final report for the DD-FD project
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Cost impact of intermittency on
conventional generators

Conventional plant utilisation (thermal only and wind-thermal system)
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What happens to conventional power plants?

Effect of plant utilization on the unit cost of electricity production

Peakers with renewables

Peakers today

Average with renewables

Unit cost of production (pence per kWh) ———»

Level of plant utilization (capacity factor) (%) —_—h

Source of underlying picture: The Cost of Generating Electricity, PB Power for the Royal Academy of Engineering
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Network studies

Electrical transmission Gas transmission
network network

© 2019 P. Mancarella Integrated energy systems, MEM Congress, Nov 2019



Network studies

Simplified electrical Simplified gas
transmission network transmission network
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How about system dynamics?
Role of linepack

= Defined by quantity of gas in network’s pipes at given time

= Used for:
— Maintaining system pressures
— Balance instantaneous changes in supply/demand
— An indicator to network operators to system state
— Means of gas network energy storage

S. Clegg, P. Mancarella, “Integrated Electrical and Gas Network Flexibility Assessment in Low-Carbon Multi-Energy Systems”, IEEE
Transactions on Sustainable Energy, 7 (2), pp.718—731, 2015,
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Intraday linepack swing
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Intraday linepack swing — Historical example
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RES variability and gas resilience
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Variability...
and unpredictability...
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Management by gas system operator

= Day ahead:
— Sell transportation rights
— Plan day’s operation

= Within-day
— Manage operation and network flows
— Deal with real time changes to flows
— Tendency to take retrospective action

— On off-peak days, gas network operators extremely flexible allowing CCGTs
to change their output at short notice

= After day

— Act as residual balancer

© 2019 P. Mancarella Integrated energy systems, MEM Congress, Nov 2019



Impact of Renewable Energy Sources (RES) on gas network:
Effect on CCGT generation
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Effect on linepack on gas network
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Whole-energy system modelling:
Integrated electricity-heat-gas systems

Gas network model Heat regional model Electrical network model
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Linepack flexibility for integrated system analysis

Linepack zone

" For each linepack zone define:
boundary

— Maximum/minimum linepack for
transport

— Upper/lower linepack limits

— Linepack flexibility

= Each assessed through iteratively
running steady-state gas flows for
predefined maximum/minimum
pressures or linepack

S. Clegg, P. Mancarella, “Integrated Electrical and Gas Network Flexibility Assessment in Low-Carbon Multi-Energy Systems”, IEEE
Transactions on Sustainable Energy, 7 (2), pp.718—731, 2015,
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Integrated gas and electrical network flexibility

" Integrated metric considers

— The upward generation capability of CCGTs from that scheduled over a
given timeframe

— Includes requirements for power system reserve

— Linepack available to meet this flexibility

= Metric defined as the limit to increase in generation output considering
bounds imposed by linepack limitations

S. Clegg, P. Mancarella, “Integrated Electrical and Gas Network Flexibility Assessment in Low-Carbon Multi-Energy Systems”, IEEE
Transactions on Sustainable Energy, 7 (2), pp.718—731, 2015,
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Flexibility case study: operational impacts

=  (Gas network operation assessed at 0600

= Wind forecast for the day are assessed at 0600 at which point the
CCGT unit-commitment for the day is scheduled

= Upon change to CCGT dispatch, then that scheduled linepack flexibility
is utilized

= Gas is replenished by an increase in terminal/storage flow 2 hours after
change in CCGT output

= Consider a flexibility utilisation period of 4 hours

S. Clegg, P. Mancarella, “Integrated Electrical and Gas Network Flexibility Assessment in Low-Carbon Multi-Energy Systems”, IEEE
Transactions on Sustainable Energy, 7 (2), pp.718—731, 2015,
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Flexibility case study: operational impacts

Compared gas-based with electrified heating scenarios
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S. Clegg, P. Mancarella, “Integrated Electrical and Gas Network Flexibility Assessment in Low-Carbon Multi-Energy Systems”, IEEE
Transactions on Sustainable Energy, 7 (2), pp.718—-731, 2015, (Special Issue on “Reserve and flexibility for handling variability and
uncertainty of renewable generation”).
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Impact of heating electrification on gas generation ramps
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S. Clegg, P. Mancarella, “Integrated Electrical and Gas Network Flexibility Assessment in Low-Carbon Multi-Energy Systems”, IEEE
Transactions on Sustainable Energy, 7 (2), pp.718-731, 2015,
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Benefits of demand response in gas sector

Demand response opportunities:
1500

= Many industrial gas customerse
can offer price-driven demand =
response

—_
o
o
Q

= Hybrid heating technologies
(e.g., hybrid CHP and boiler)

can reduce gas demand haaaiits | | . |
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Demand response benefits:

= Avoid gas network expansion for meeting days of extreme
cold conditions

= Alleviate supply limitations and gas transportation
limitations
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Hybrid CHP and boiler as a means of demand response in
gas network

=  (Gas network extremities are
prone to low pressure violations

=  (Gas demand response can
raise pressures at critical hours
in day
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S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas Modelling and
Assessment, with Applications to the Great Britain System. Part II:
Transmission Network Analysis and Low Carbon Technology and Resilience
Case Studies”, Energy, February 2018

) . _ Node of low pressure and
S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas Modelling and

Assessment, with Applications to the Great Britain System. Part I: High- hlg h gaS demand (Nl)
Resolution Spatial and Temporal Heat Demand Modelling”, Energy, February
2018
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What is the future of the gas network?
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Power-to-gas Hydrogen
Excess wind via
energy electrolysis

S. Clegg, P. Mancarella, “Integrated modelling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas
transmission networks”, IEEE Transactions on Sustainable Energy 6 (4), pp.1234—1244, 2015
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Power-to-gas

= Utilising cheap, otherwise wasted
energy

Excess electrical generation

" Increases proportion of generation

from renewables Make hydrogen and/or
methane
= Use of hydrogen as a substitute to
natural gas leads to reduction in CO, l
emissions

Inject into gas networks

= Can be used as a means of storing
the wasted energy

S. Clegg, P. Mancarella, “Integrated modelling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas
transmission networks”, IEEE Transactions on Sustainable Energy 6 (4), pp.1234—1244, 2015
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Wind curtailment
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The hydrogenation and methanation process

" Hydrogen production
— Produced via electrolysis at electrolyser
— Proton exchange membrane (PEM) have efficiency 77%

— The electrolysers are able to ramp up and down quickly to follow sudden
changes in the wind output

= Methanation process
— Converting of hydrogen into synthetic natural gas
— Process can be biological or chemical
— Efficiency 75-85%

— Efficiency of combined process 43-62%

S. Clegg, P. Mancarella, “Integrated modelling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas
transmission networks”, IEEE Transactions on Sustainable Energy 6 (4), pp.1234—1244, 2015
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The introduction of hydrogen into gas network

= Limits on the level of hydrogen in the gas network

— Regulatory restrictions

— Technical restrictions

— Blending would be helped by blending upstream with help of throughput to

distribute hydrogen

= For modelling:

— Supposed limits on the
level of hydrogen in the
gas network

— Regulatory restrictions

Pipeline flow capacity in comparison

to natural gas (percent)
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S. Clegg, P. Mancarella, “Integrated modelling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas
transmission networks”, IEEE Transactions on Sustainable Energy 6 (4), pp.1234—1244, 2015
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Integrated system operation:
P2G to bypass electricity constraints
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S. Clegg, P. Mancarella, “Integrated modelling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas
transmission networks”, IEEE Transactions on Sustainable Energy 6 (4), pp.1234—1244, 2015
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Gas network congestion relief — GB study
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Integrated system operation:
P2G for seasonal storage
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Peak

demand
[GW]

EAstorage injection
1E2ukes

|:|Norway

| Storage withdrawal
Elnterconnector and LNG
1 JPower-to-gas

WMA hh, |

Il

(o8

Y. ——

//_-_I,.:_"

]
=
-

;’e"’. —

[
[ -

]

|z

=
|/ 77—
T
prare——
—
r——
B
———

—

—

.
e
’ —

Origin of gas supply (TWh)
N

o
C U 2 TN W b

VY -\* A 'Jm““h :

7 ¥ W\ N T s A Yoy VvV v Vv

May Aug Nov Feb
Date

- Use of gas network for RES storage - Impact on gas prices over seasons

o
o

S. Clegg, P. Mancarella, “Storing renewables in the gas network: modelling of power-to-gas seasonal storage flexibility in low-carbon
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How about transport?

Energy Flow Chart 2014 Petrol
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Power-to-hydrogen-to-X

Moves to decarbonise transportation sector via hydrogen fuel cell electric
vehicles

Power-to-gas

Excess wind | Hydvri%gen
energy electrolysis
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A look down under!
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Port Lincoln multi-commodity hub
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The bigger picture:
It's not (at all) only about electricity...

Australian Energy Flows 2016-17 (Petajoules)
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Key ongoing projects

" Future Fuel CRC

— System-level and regional integrated electricity-gas-
hydrogen modelling

— City-level integrated energy system studies
= UK National Grid

— Review of planning methodologies

= | ooking forward to collaborations!
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Concluding remarks

= Renewables introduce power system flexibility challenges
= (Gas generators are greatly affected

® |ncreasing need for electricity-gas system operation and

market coordination

= This will be enhanced in the future with electrification and

new energy vectors (hydrogen)

= Need for coordinated expansion that takes into account

multiple forms of uncertainty in planning
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Thank you!

Any Questions?

—
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pierluigi.mancarella@unimelb.edu.au
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Terminals

= Beach terminals/wells
— Little flexibility
— Flat delivery throughout the day

= LNG

— Can respond to network requirements within
an hour

®  |nterconnectors

— British-Irish interconnector exports over the
day, British-Dutch interconnector faster turn-
around
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Storage

= | ong-term/seasonal storage
— Depleted gas fields

— Meets seasonal variations in demand and price

" Medium-term storage
— Salt caverns

— Responds to both daily and intraday price signals

= Short-term/peak-shaving LNG
— Meets peak day demand

— Can be a substitute for gas network reinforcement
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Application of alternative modelling

= Steady-state analysis
— Examples of application:
« day ahead network operation planning
* network expansion planning
» when the variations in flows are small
 pipeline capacity evaluations

— Assumption of supply-demand balance

" Transient analysis
— Examples of application:
* Real time modelling
« Evaluation of pipeline gas storage, linepack variations

» System pressures throughout the day
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Motivation — The current UK heating sector

= 37% of UK CO, emissions arise

. Oil-fuelled boiler Solid fuel
from the heating sector |

Electric

= Any attempt to meet targets in heating
the reduction of greenhouse gas
emissions needs to include a
change in the heat generating
technologies

boiler

" The primary fuel used for
heating in the UK is natural gas

Breakdown of domestic space
heating generation technologies
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Electrification:
the magnitude of the problem...
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Source: Courtesy of Imperial College. For illustrative purposes only and based on actual half-hourly electricity demand from
MNational Grid and an estimate of half hourly heat demand.
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Integrated system modelling

= System modelling accounts for

— Meeting electricity and heat
demands by cheapest means

— Electrical line constraints
(assessed using DC OPF)

— Gas transmission line
constraints (assessed using
steady-state analysis)

— Regional wind/solar generation

— Regional gas prices

S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas

Modelling and Assessment, with Applications to the Great Britain
System. Part II: Transmission Network Analysis and Low Carbon
Technology and Resilience Case Studies”, Energy, February 2018

S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas
Modelling and Assessment, with Applications to the Great Britain
System. Part I: High-Resolution Spatial and Temporal Heat
Demand Modelling”, Energy, February 2018
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Impacts of heating sector changes to power sector

= Electrification of heating leads to increases in electricity demand

® Morning increase in heat demand precedes increase in electrical
demand leading to lower electrical demand net CHP generation

—.Electrical derr.1and with incréased EHP utililzation
— Historic electrical demand
—Electrical demand with increased CHP utilization
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Resilience study — Background and precedents in Britain

= Decommissioning of ageing gas storage infrastructure

— Rough storage facility, accounting for 70% of Britain’s gas storage capacity,
set for closure

= Change in Britain gas

supplies
— Since 2014, Britain has g
been a net importer of gas i
- In long-term forecasts, E =»
Britain expects LNG to be 2 oo Qo e
the principal source of gas

[+
O 0

— International factors

N 1 1 1 X 1
2000 2002 2004 2006 2008 2010 2012 2014

influence gas availability in
Britain
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Implications of gas network transportation on peak day

requirements
®  Scenario considers:

— Storage decommission/outages

reduces supply by 136x108 m3 of gas ggééfz
Scotland gas price:

— Demand is 97% of supply capability Eﬁ 0 ~A16.6 £/MWh

= British network capable of meeting
peak day requirements

= Peak day compressor fuel
requirements and transportation
limitations leads to large variations in
gas price

= South-west gas price 60% greater than
minimum price

S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas Modelling and
Assessment, with Applications to the Great Britain System. Part II: Transmission
Network Analysis and Low Carbon Technology and Resilience Case Studies”,
Energy, February 2018

S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas Modelling and South-west gas price:
Assessment, with Applications to the Great Britain System. Part I: High- 26.6 £/MWh

Resolution Spatial and Temporal Heat Demand Modelling”, Energy, February

2018
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Opportunities for gas demand response

®m  Scenario considers:

Storage decommission/outages > Gas demand
reduces supply by 136x108 m3 5 et side response
of gas r 4

-/ Scotland gas price:
- 255 £/MWh

_ Limited LNG availability due to
tanker delivery schedule

— Demand exceeds supply by 116
GWh/day

=  Gas demand response
predominantly from industry in
Northern England allows for
maintaining firm gas demand

S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas Modelling
and Assessment, with Applications to the Great Britain System. Part
II: Transmission Network Analysis and Low Carbon Technology and
Resilience Case Studies”, Energy, February 2018

. —1 <
S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas Modelling South-[w'e.st'-'ga"s price;
and Assessment, with Applications to the Great Britain System. Part I: 503 £/|V|Wh
High-Resolution Spatial and Temporal Heat Demand Modelling”,
Energy, February 2018
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Fuel cell electric vehicles

Fuel cell vehicles

= On-board fuel cell used to convert hydrogen into electric power to drive motor
= Refuelling occurs at hydrogen refuelling stations

= Refuelling process takes a couple of minutes

= A hydrogen fuel cell car can have range of over 500km

Refuelling stations
= Can create hydrogen using on-site electrolyser

= On-site storage allows for decoupling of electrolyser power demand from
vehicle demand

= Electrolysers have extremely flexible characteristics and are able to react to
power system changes and offer ancillary services
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Looking at the system value:
FCAS from electrolizers

= Modelling considers roll-out of hydrogen electric vehicles which leads to
3% increase in power system demand

Carbon emissions
(Mtonnes CO,e / 31.1 12.3 61%
year)

Operating costs

0
(Ex10°/ year) 5.84 4.74 19%

L. Zhang, S. Clegg, P. Mancarella, “Modelling of electrolyzers in hydrogen vehicle refuelling stations for provision of ancillary
services ”, IREP 2017, Espinho, Portugal, August 2017
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Electrolyser contribution to power system ancillary services
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L. Zhang, S. Clegg, P. Mancarella, “*Modeling of electrolyzers in hydrogen vehicle refueling stations for provision of ancillary services” IREP
Symposium, X Bulk Power Systems Dynamics and Control Symposium, Espinho, 2017.
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