Integrated electricity-gas system modelling and analysis and development of future fuels

Prof Pierluigi Mancarella

The University of Melbourne, Australia, and The University of Manchester, UK

veski Innovation Fellow

pierluigi.mancarella@unimelb.edu.au

MEM Congress

Cartagena, 1st November 2019
Background
The impact of renewable generation
Variability, energy and secure capacity

Conventional capacity and energy displacement at various levels of wind penetration, future UK scenarios, 55GW peak

Source: P. Mancarella et al, Business case for flexible demand, Final report for the DD-FD project
Cost impact of intermittency on conventional generators

Conventional plant utilisation (thermal only and wind-thermal system)

Source: P. Mancarella et al, Business case for flexible demand, Final report for the DD-FD project
What happens to conventional power plants?

Source of underlying picture: The Cost of Generating Electricity, PB Power for the Royal Academy of Engineering
Network studies

Electrical transmission network

Gas transmission network
Network studies

Simplified electrical transmission network

Simplified gas transmission network
How about system dynamics?
Role of linepack

- Defined by quantity of gas in network’s pipes at given time

- Used for:
 - Maintaining system pressures
 - Balance instantaneous changes in supply/demand
 - An indicator to network operators to system state
 - Means of gas network energy storage

Intraday linepack swing

- **Power station demand**
- **Other demand**
- **Linepack variation**

© 2019 P. Mancarella

Integrated energy systems, MEM Congress, Nov 2019
Intraday linepack swing – Historical example
RES variability and gas resilience

National Grid’s 2030 Gone Green Scenario:
- Wind 47.5 GW
- PV 15.6 GW
Variability…
and unpredictability…
Management by gas system operator

- **Day ahead:**
 - Sell transportation rights
 - Plan day’s operation

- **Within-day**
 - Manage operation and network flows
 - Deal with real time changes to flows
 - Tendency to take retrospective action
 - On off-peak days, gas network operators extremely flexible allowing CCGTs to change their output at short notice

- **After day**
 - Act as residual balancer
Impact of Renewable Energy Sources (RES) on gas network: Effect on CCGT generation
Effect on linepack on gas network
Whole-energy system modelling: Integrated electricity-heat-gas systems

Gas network model

Heat regional model

Electrical network model

Gas network model

Heat regional model

Electrical network model

© 2019 P. Mancarella
Linepack flexibility for integrated system analysis

- For each linepack zone define:
 - Maximum/minimum linepack for transport
 - Upper/lower linepack limits
 - Linepack flexibility

- Each assessed through iteratively running steady-state gas flows for predefined maximum/minimum pressures or linepack

Integrated gas and electrical network flexibility

- Integrated metric considers
 - The upward generation capability of CCGTs from that scheduled over a given timeframe
 - Includes requirements for power system reserve
 - Linepack available to meet this flexibility

- Metric defined as the limit to increase in generation output considering bounds imposed by linepack limitations
Flexibility case study: operational impacts

- Gas network operation assessed at 0600

- Wind forecast for the day are assessed at 0600 at which point the CCGT unit-commitment for the day is scheduled

- Upon change to CCGT dispatch, then that scheduled linepack flexibility is utilized

- Gas is replenished by an increase in terminal/storage flow 2 hours after change in CCGT output

- Consider a flexibility utilisation period of 4 hours

Flexibility case study: operational impacts

Compared gas-based with electrified heating scenarios

Impact of heating electrification on gas generation ramps

Benefits of demand response in gas sector

Demand response opportunities:

▪ Many industrial gas customers can offer price-driven demand response

▪ Hybrid heating technologies (e.g., hybrid CHP and boiler) can reduce gas demand

Demand response benefits:

▪ Avoid gas network expansion for meeting days of extreme cold conditions

▪ Alleviate supply limitations and gas transportation limitations
Hybrid CHP and boiler as a means of demand response in gas network

- Gas network extremities are prone to low pressure violations
- Gas demand response can raise pressures at critical hours in day

Node of low pressure and high gas demand (N_1)
What is the future of the gas network?

Excess wind energy → Power-to-gas → Hydrogen via electrolysis

Power-to-gas

- Utilising cheap, otherwise wasted energy
- Increases proportion of generation from renewables
- Use of hydrogen as a substitute to natural gas leads to reduction in CO₂ emissions
- Can be used as a means of storing the wasted energy

Excess electrical generation

Make hydrogen and/or methane

Inject into gas networks

Wind curtailment

The hydrogenation and methanation process

- **Hydrogen production**
 - Produced via electrolysis at electrolyser
 - Proton exchange membrane (PEM) have efficiency 77%
 - The electrolysers are able to ramp up and down quickly to follow sudden changes in the wind output

- **Methanation process**
 - Converting of hydrogen into synthetic natural gas
 - Process can be biological or chemical
 - Efficiency 75-85%
 - Efficiency of combined process 43-62%

The introduction of hydrogen into gas network

- Limits on the level of hydrogen in the gas network
 - Regulatory restrictions
 - Technical restrictions
 - Blending would be helped by blending upstream with help of throughput to distribute hydrogen

- For modelling:
 - Supposed limits on the level of hydrogen in the gas network
 - Regulatory restrictions

Integrated system operation: P2G to bypass electricity constraints

Modelling the impact of H2 injection on gas flows

Gas network congestion relief – GB study

Impact of power-to-gas on pressures of gas network extremities

Integrated system operation: P2G for seasonal storage

<table>
<thead>
<tr>
<th>Installed generation capacities</th>
<th>Peak demand [GW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind [GW]</td>
<td>Solar [GW]</td>
</tr>
<tr>
<td>92</td>
<td>40</td>
</tr>
</tbody>
</table>

- Use of gas network for RES storage - Impact on gas prices over seasons

How about transport?
Power-to-hydrogen-to-X

Moves to decarbonise transportation sector via hydrogen fuel cell electric vehicles

Excess wind energy → Power-to-gas → Hydrogen via electrolysis
A look down under!
Port Lincoln multi-commodity hub

to the NEM

Port Lincoln

Adelaide

Melbourne

© 2019 P. Mancarella

Integrated energy systems, MEM Congress, Nov 2019
The bigger picture:
It’s not (at all) only about electricity...
Key ongoing projects

- **Future Fuel CRC**
 - System-level and regional integrated electricity-gas-hydrogen modelling
 - City-level integrated energy system studies

- **UK National Grid**
 - Review of planning methodologies

- Looking forward to collaborations!
Concluding remarks

- Renewables introduce power system flexibility challenges
- Gas generators are greatly affected
- Increasing need for electricity-gas system operation and market coordination
- This will be enhanced in the future with electrification and new energy vectors (hydrogen)
- Need for coordinated expansion that takes into account multiple forms of uncertainty in planning
Key references

Thank you!

Any Questions?

pierluigi.mancarella@unimelb.edu.au
Integrated electricity-gas system modelling and analysis and development of future fuels

Prof Pierluigi Mancarella

The University of Melbourne, Australia, and The University of Manchester, UK

veski Innovation Fellow

pierluigi.mancarella@unimelb.edu.au

MEM Congress

Cartagena, 1st November 2019
Terminals

- Beach terminals/wells
 - Little flexibility
 - Flat delivery throughout the day

- LNG
 - Can respond to network requirements within an hour

- Interconnectors
 - British-Irish interconnector exports over the day, British-Dutch interconnector faster turn-around
Storage

▪ Long-term/seasonal storage
 – Depleted gas fields
 – Meets seasonal variations in demand and price

▪ Medium-term storage
 – Salt caverns
 – Responds to both daily and intraday price signals

▪ Short-term/peak-shaving LNG
 – Meets peak day demand
 – Can be a substitute for gas network reinforcement
Application of alternative modelling

- Steady-state analysis
 - Examples of application:
 - day ahead network operation planning
 - network expansion planning
 - when the variations in flows are small
 - pipeline capacity evaluations
 - Assumption of supply-demand balance

- Transient analysis
 - Examples of application:
 - Real time modelling
 - Evaluation of pipeline gas storage, linepack variations
 - System pressures throughout the day
Motivation – The current UK heating sector

- 37% of UK CO₂ emissions arise from the heating sector
- Any attempt to meet targets in the reduction of greenhouse gas emissions needs to include a change in the heat generating technologies
- The primary fuel used for heating in the UK is natural gas

Breakdown of domestic space heating generation technologies
Electrification: the magnitude of the problem...

Source: Courtesy of Imperial College. For illustrative purposes only and based on actual half-hourly electricity demand from National Grid and an estimate of half hourly heat demand.
Integrated system modelling

- System modelling accounts for
 - Meeting electricity and heat demands by cheapest means
 - Electrical line constraints (assessed using DC OPF)
 - Gas transmission line constraints (assessed using steady-state analysis)
 - Regional wind/solar generation
 - Regional gas prices

Impacts of heating sector changes to power sector

- Electrification of heating leads to increases in electricity demand
- Morning increase in heat demand precedes increase in electrical demand leading to lower electrical demand net CHP generation
Resilience study – Background and precedents in Britain

- Decommissioning of ageing gas storage infrastructure
 - Rough storage facility, accounting for 70% of Britain’s gas storage capacity, set for closure

- Change in Britain gas supplies
 - Since 2014, Britain has been a net importer of gas
 - In long-term forecasts, Britain expects LNG to be the principal source of gas
 - International factors influence gas availability in Britain
Implications of gas network transportation on peak day requirements

- Scenario considers:
 - Storage decommission/outages reduces supply by 136×10^6 m3 of gas
 - Demand is 97% of supply capability

- British network capable of meeting peak day requirements

- Peak day compressor fuel requirements and transportation limitations leads to large variations in gas price

- South-west gas price 60% greater than minimum price

Scotland gas price: 16.6 £/MWh

South-west gas price: 26.6 £/MWh
Opportunities for gas demand response

 Scenario considers:

- Storage decommission/outages reduces supply by 136×10^6 m3 of gas
- Limited LNG availability due to tanker delivery schedule
- Demand exceeds supply by 116 GWh/day

Gas demand response predominantly from industry in Northern England allows for maintaining firm gas demand

Fuel cell electric vehicles

Fuel cell vehicles

- On-board fuel cell used to convert hydrogen into electric power to drive motor
- Refuelling occurs at hydrogen refuelling stations
- Refuelling process takes a couple of minutes
- A hydrogen fuel cell car can have range of over 500km

Refuelling stations

- Can create hydrogen using on-site electrolyser
- On-site storage allows for decoupling of electrolyser power demand from vehicle demand
- Electrolysers have extremely flexible characteristics and are able to react to power system changes and offer ancillary services
Looking at the system value: FCAS from electrolizers

- Modelling considers roll-out of hydrogen electric vehicles which leads to 3% increase in power system demand

<table>
<thead>
<tr>
<th></th>
<th>No contribution to FCAS</th>
<th>With contribution to FCAS</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon emissions (Mtonnes CO$_2$e / year)</td>
<td>31.1</td>
<td>12.3</td>
<td>61%</td>
</tr>
<tr>
<td>Operating costs (£×109/ year)</td>
<td>5.84</td>
<td>4.74</td>
<td>19%</td>
</tr>
</tbody>
</table>

Electrolyser contribution to power system ancillary services

© 2019 P. Mancarella